Radionuclide Imaging of Pheochromocytoma and Paraganglioma in the Era of Multi-omics



Fig. 12.1
1H-NMR spectra of PPGLs. One-dimensional 500 MHz 1H-NMR spectra of PPGL tumor tissues at pH 2.50. Upper panel, sporadic tumor showing normal tumor metabolites like lactic acid, acetic acid, and catecholamines. Middle panel, SDHB tumor showing a high concentration of succinic acid (9.89 nmol/mg tissue). Lower panel, RET tumor showing high resonance of epinephrine and the overlap of the three doublets deriving from ATP/ADP/AMP



A339179_1_En_12_Fig2_HTML.gif


Fig. 12.2
Radionuclide transporters in PPGL tumor cell. GLUT glucose transporter, LAT large amino acid transporter, NET norepinephrine transporter, SSTR somatostatin receptor, VMAT vesicular monoamine transporter


A339179_1_En_12_Fig3_HTML.gif


Fig. 12.3
Radionuclide imaging of SDHB PPGL. 18F-FDG PET (panel a) and 123I-MIBG SPECT (panel b) images of patients with a mediastinal PPGL due to a succinate dehydrogenase subunit B (SDHB) mutation. 123I-MIBG fails to detect the tumor (Adapted from Timmers et al. [34])


A339179_1_En_12_Fig4_HTML.gif


Fig. 12.4
18F-FDG uptake across genotypes. 18F-FDG PET standardized uptake values in non-metastatic PPGLs across genotypes. MEN2 multiple endocrine neoplasia type 2, SPOR sporadic, SUVmax maximum standard uptake value (Adapted from Timmers et al. [34])


A339179_1_En_12_Fig5_HTML.gif


Fig. 12.5
18F-FDG uptake and metabolism in PPGL tumor cell


A339179_1_En_12_Fig6_HTML.gif


Fig. 12.6
Two-tissue compartment 18F-FDG kinetic model. Transfer rates for transmembranous glucose flux (K1 (in), k2 (out)) and intracellular phosphorylation (k3). EES extravascular extracellular space


A339179_1_En_12_Fig7_HTML.gif


Fig. 12.7
Dynamic 18F-FDG PET scanning. Panel a: the SDHD (succinate dehydrogenase subunit D)-related PPGL stands out from sporadic tumors in regards to metabolic rate of glucose (MRglu). Panel b: 18F-FDG PET-CT fusion image (upper image) and metabolic rate map (lower image) of SDHD-related right adrenal pheochromocytoma (corresponding with SDHD case in panel a)




References



1.

Lenders JW, Eisenhofer G, Mannelli M, Pacak K. Phaeochromocytoma. Lancet. 2005;366(9486):665–75.CrossRefPubMed


2.

Eisenhofer G, Goldstein DS, Sullivan P, Csako G, Brouwers FM, Lai EW, et al. Biochemical and clinical manifestations of dopamine-producing paragangliomas: utility of plasma methoxytyramine. J Clin Endocrinol Metab. 2005;90:2068–75.CrossRefPubMed


3.

Plouin PF, Fitzgerald P, Rich T, Ayala-Ramirez M, Perrier ND, Baudin E, et al. Metastatic pheochromocytoma and paraganglioma: focus on therapeutics. Horm Metab Res. 2012;44(5):390–9.CrossRefPubMed


4.

Amar L, Baudin E, Burnichon N, Peyrard S, Silvera S, Bertherat J, et al. Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J Clin Endocrinol Metab. 2007;92(10):3822–8.CrossRefPubMed


5.

Welander J, Soderkvist P, Gimm O. Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr Relat Cancer. 2011;18(6):R253–76.CrossRefPubMed


6.

Lorenzo FR, Yang C, Ng Tang Fui M, Vankayalapati H, Zhuang Z, Huynh T, et al. A novel EPAS1/HIF2A germline mutation in a congenital polycythemia with paraganglioma. J Mol Med. 2013;91(4):507–12.CrossRefPubMed


7.

Castro-Vega LJ, Buffet A, De Cubas AA, Cascon A, Menara M, Khalifa E, et al. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Human molecular genetics. 2014; 23(9):2440–6.


8.

Cascon A, Comino-Mendez I, Curras-Freixes M, de Cubas AA, Contreras L, Richter S, et al. Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene. J Natl Cancer Inst. 2015;107(5):1–5.


9.

Burnichon N, Vescovo L, Amar L, Libe R, de Reynies A, Venisse A, et al. Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum Mol Genet. 2011;20(20):3974–85.CrossRefPubMed


10.

Burnichon N, Buffet A, Parfait B, Letouze E, Laurendeau I, Loriot C, et al. Somatic NF1 inactivation is a frequent event in sporadic pheochromocytoma. Hum Mol Genet. 2012;21(26):5397–405.CrossRefPubMed


11.

Zhuang Z, Yang C, Lorenzo F, Merino M, Fojo T, Kebebew E, et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med. 2012;367(10):922–30.CrossRefPubMedPubMedCentral


12.

van Nederveen FH, Korpershoek E, Lenders JW, de Krijger RR, Dinjens WN. Somatic SDHB mutation in an extraadrenal pheochromocytoma. N Engl J Med. 2007;357(3):306–8.CrossRefPubMed


13.

Welander J, Larsson C, Backdahl M, Hareni N, Sivler T, Brauckhoff M, et al. Integrative genomics reveals frequent somatic NF1 mutations in sporadic pheochromocytomas. Hum Mol Genet. 2012;21(26):5406–16.CrossRefPubMed


14.

Crona J, Delgado Verdugo A, Maharjan R, Stalberg P, Granberg D, Hellman P, et al. Somatic mutations in H-RAS in sporadic pheochromocytoma and paraganglioma identified by exome sequencing. J Clin Endocrinol Metab. 2013;98(7):E1266–71.CrossRefPubMed


15.

Dahia PL. Transcription association of VHL and SDH mutations link hypoxia and oxidoreductase signals in pheochromocytomas. Ann N Y Acad Sci. 2006;1073:208–20.CrossRefPubMed


16.

Favier J, Briere JJ, Burnichon N, Riviere J, Vescovo L, Benit P, et al. The Warburg effect is genetically determined in inherited pheochromocytomas. PLoS One. 2009;4(9):e7094.CrossRefPubMedPubMedCentral


17.

Gimenez-Roqueplo AP, Favier J, Rustin P, Mourad JJ, Plouin PF, Corvol P, et al. The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway. Am J Hum Genet. 2001;69(6):1186–97.CrossRefPubMedPubMedCentral

Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Oct 27, 2017 | Posted by in ENDOCRINOLOGY | Comments Off on Radionuclide Imaging of Pheochromocytoma and Paraganglioma in the Era of Multi-omics

Full access? Get Clinical Tree

Get Clinical Tree app for offline access