Translational and Post-translational Control of Leptin Production by Fat Cells



Fig. 10.1
mTORC1 couples leptin secretion to the adipocyte size. Insulin and nutrients activate leptin biosynthesis via the mTORC1-mediated pathway that also promotes storage of triglycerides and increases the size of the cell. De novo synthesized leptin molecules are partitioned between constitutive and regulated secretion and immediate degradation





References



Adamczak M, Wiecek A (2013) The adipose tissue as an endocrine organ. Semin Nephrol 33:2–13PubMedCrossRef


Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62:413–437PubMedCrossRef


Appel B, Fried SK (1992) Effects of insulin and dexamethasone on lipoprotein lipase in human adipose tissue. Am J Physiol 262:E695–E699PubMed


Barr VA, Malide D, Zarnowski MJ, Taylor SI, Cushman SW (1997) Insulin stimulates both leptin secretion and production by rat white adipose tissue. Endocrinology 138:4463–4472PubMedCrossRef


Becker DJ, Ongemba LN, Brichard V, Henquin JC, Brichard SM (1995) Diet- and diabetes-induced changes of ob gene expression in rat adipose tissue. FEBS Lett 371:324–328PubMedCrossRef


Bentzinger CF, Romanino K, Cloetta D, Lin S, Mascarenhas JB, Oliveri F, Xia J, Casanova E, Costa CF, Brink M, Zorzato F, Hall MN, Ruegg MA (2008) Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 8:411–424PubMedCrossRef


Bogan JS (2012) Regulation of glucose transporter translocation in health and diabetes. Annu Rev Biochem 81:507–532PubMedCrossRef


Bogan JS, Lodish HF (1999) Two compartments for insulin-stimulated exocytosis in 3T3-L1 adipocytes defined by endogenous ACRP30 and GLUT4. J Cell Biol 146:609–620PubMedPubMedCentralCrossRef


Bornstein SR, Abu-Asab M, Glasow A, Path G, Hauner H, Tsokos M, Chrousos GP, Scherbaum WA (2000) Immunohistochemical and ultrastructural localization of leptin and leptin receptor in human white adipose tissue and differentiating human adipose cells in primary culture. Diabetes 49:532–538PubMedCrossRef


Bradley RL, Cheatham B (1999) Regulation of ob gene expression and leptin secretion by insulin and dexamethasone in rat adipocytes. Diabetes 48:272–278PubMedCrossRef


Burgess TL, Kelly RB (1987) Constitutive and regulated secretion of proteins. Annu Rev Cell Biol 3:243–293PubMedCrossRef


Carnevalli LS, Masuda K, Frigerio F, Le Bacquer O, Um SH, Gandin V, Topisirovic I, Sonenberg N, Thomas G, Kozma SC (2010) S6K1 plays a critical role in early adipocyte differentiation. Dev Cell 18:763–774PubMedPubMedCentralCrossRef


Chakrabarti P, Anno T, Manning BD, Luo Z, Kandror KV (2008) The mammalian target of rapamycin complex 1 regulates leptin biosynthesis in adipocytes at the level of translation: the role of the 5′-untranslated region in the expression of leptin messenger ribonucleic acid. Mol Endocrinol 22:2260–2267PubMedPubMedCentralCrossRef


Chakrabarti P, English T, Shi J, Smas CM, Kandror KV (2010) The mTOR complex 1 suppresses lipolysis, stimulates lipogenesis and promotes fat storage. Diabetes 59:775–781PubMedPubMedCentralCrossRef


Chakrabarti P, Kim JY, Singh M, Shin YK, Kim J, Kumbrink J, Wu Y, Lee MJ, Kirsch KH, Fried SK, Kandror KV (2013) Insulin inhibits lipolysis in adipocytes via the evolutionary conserved mTORC1-Egr1-ATGL-mediated pathway. Mol Cell Biol 33:3659–3666PubMedPubMedCentralCrossRef


Chavez RA, Miller SG, Moore HP (1996) A biosynthetic regulated secretory pathway in constitutive secretory cells. J Cell Biol 133:1177–1191PubMedCrossRef


Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450:736–740PubMedCrossRef


Dalamaga M, Chou SH, Shields K, Papageorgiou P, Polyzos SA, Mantzoros CS (2013) Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab 18:29–42PubMedCrossRef


Dibble CC, Manning BD (2013) Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 15:555–564PubMedPubMedCentralCrossRef


Eckel RH, Prasad JE, Kern PA, Marshall S (1984) Insulin regulation of lipoprotein lipase in cultured isolated rat adipocytes. Endocrinology 114:1665–1671PubMedCrossRef


Efeyan A, Zoncu R, Sabatini DM (2012) Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med 18:524–533PubMedPubMedCentralCrossRef


Enerback S, Gimble JM (1993) Lipoprotein lipase gene expression: physiological regulators at the transcriptional and post-transcriptional level. Biochim Biophys Acta 1169:107–125PubMedCrossRef


Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285:14071–14077PubMedPubMedCentralCrossRef


Frederich RC, Lollmann B, Hamann A, Napolitano-Rosen A, Kahn BB, Lowell BB, Flier JS (1995) Expression of ob mRNA and its encoded protein in rodents. Impact of nutrition and obesity. J Clin Invest 96:1658–1663PubMedPubMedCentralCrossRef


Fried SK, DiGirolamo M (1986) Lipoprotein lipase secretion from isolated rat fat cells of different size. Life Sci 39:2111–2119PubMedCrossRef


Friedman JM (2009) Leptin at 14 y of age: an ongoing story. Am J Clin Nutr 89:973S–979SPubMedPubMedCentralCrossRef


Hamilton BS, Paglia D, Kwan AY, Deitel M (1995) Increased obese mRNA expression in omental fat cells from massively obese humans. Nat Med 1:953–956PubMedCrossRef

Sep 18, 2016 | Posted by in ENDOCRINOLOGY | Comments Off on Translational and Post-translational Control of Leptin Production by Fat Cells

Full access? Get Clinical Tree

Get Clinical Tree app for offline access