33.
Toh B, Wang X, Keeble J, Sim WJ, Khoo K, Wong WC, et al. (2011) Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol 9(9):e1001162PubMedCentralPubMed
34.
Izumchenko E, Chang X, Michailidi C, Kagohara L, Ravi R, Paz K, et al. (2014) The TGFbeta-miR200-MIG6 pathway orchestrates the EMT-associated kinase switch that induces resistance to EGFR inhibitors. Cancer Res 74(14):3995–4005PubMed
35.
Kitamura K, Seike M, Okano T, Matsuda K, Miyanaga A, Mizutani H, et al. (2014) MiR-134/487b/655 cluster regulates TGF-beta-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells. Mol Cancer Ther 13(2):444–453PubMed
36.
Zarogoulidis P, Yarmus L, Darwiche K, Walter R, Huang H, Li Z, et al. (2013) Interleukin-6 cytokine: a multifunctional glycoprotein for cancer. Immunome Res 9(62):16535PubMedCentralPubMed
37.
Yadav A, Kumar B, Datta J, Teknos TN, Kumar P (2011) IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res 9(12):1658–1667PubMedCentralPubMed
38.
Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L, Chiarugi P (2010) Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res 70(17):6945–6956PubMed
39.
Bao B, Ali S, Ahmad A, Azmi AS, Li Y, Banerjee S, et al. (2012) Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PLoS ONE 7(12):e50165PubMedCentralPubMed
40.
Bao B, Ahmad A, Kong D, Ali S, Azmi AS, Li Y, et al. (2012) Hypoxia induced aggressiveness of prostate cancer cells is linked with deregulated expression of VEGF, IL-6 and miRNAs that are attenuated by CDF. PLoS ONE 7(8):e43726PubMedCentralPubMed
41.
Dalwadi H, Krysan K, Heuze-Vourc’h N, Dohadwala M, Elashoff D, Sharma S, et al. (2005) Cyclooxygenase-2-dependent activation of signal transducer and activator of transcription 3 by interleukin-6 in non-small cell lung cancer. Clin Cancer Res 11(21):7674–7682PubMed
42.
Yao Z, Fenoglio S, Gao DC, Camiolo M, Stiles B, Lindsted T, et al. (2010) TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc Natl Acad Sci U S A 107(35):15535–15540PubMedCentralPubMed
43.
Korkaya H, Kim GI, Davis A, Malik F, Henry NL, Ithimakin S, et al. (2012) Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2 + breast cancer by expanding the cancer stem cell population. Mol Cell 47(4):570–584PubMedCentralPubMed
44.
Giles KM, Kalinowski FC, Candy PA, Epis MR, Zhang PM, Redfern AD, et al. (2013) Axl mediates acquired resistance of head and neck cancer cells to the epidermal growth factor receptor inhibitor erlotinib. Mol Cancer Ther 12(11):2541–2558PubMed
45.
Carstens JL, Lovisa S, Kalluri R (2014) Microenvironment-dependent cues trigger miRNA-regulated feedback loop to facilitate the EMT/MET switch. J Clin Invest 124(4):1458–1460PubMedCentralPubMed
46.
Rokavec M, Oner MG, Li H, Jackstadt R, Jiang L, Lodygin D, et al. (2014) IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest 124(4):1853–1867PubMedCentralPubMed
47.
Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3(9):745–756PubMed
48.
Kim V, Rogers TJ, Criner GJ (2008) New concepts in the pathobiology of chronic obstructive pulmonary disease. Proc Am Thorac Soc 5(4):478–485PubMedCentralPubMed
49.
Mukhopadhyay S, Hoidal JR, Mukherjee TK (2006) Role of TNFalpha in pulmonary pathophysiology. Respir Res 7:125PubMedCentralPubMed
50.
Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15(5):416–428PubMedCentralPubMed
51.
Kawata M, Koinuma D, Ogami T, Umezawa K, Iwata C, Watabe T, Miyazono K (2012) TGF-beta-induced epithelial-mesenchymal transition of A549 lung adenocarcinoma cells is enhanced by pro-inflammatory cytokines derived from RAW 264.7 macrophage cells. J Biochem 151(2):205–216PubMed
52.
Li CW, Xia W, Huo L, Lim SO, Wu Y, Hsu JL, et al. (2012) Epithelial-mesenchymal transition induced by TNF-alpha requires NF-kappaB-mediated transcriptional upregulation of Twist1. Cancer Res 72(5):1290–1300PubMedCentralPubMed
53.
Shiozaki A, Bai XH, Shen-Tu G, Moodley S, Takeshita H, Fung SY, et al. (2012) Claudin 1 mediates TNFalpha-induced gene expression and cell migration in human lung carcinoma cells. PLoS ONE 7(5):e38049PubMedCentralPubMed
54.
Saito A, Suzuki HI, Horie M, Ohshima M, Morishita Y, Abiko Y, Nagase T (2013) An integrated expression profiling reveals target genes of TGF-beta and TNF-alpha possibly mediated by microRNAs in lung cancer cells. PLoS ONE 8(2):e56587PubMedCentralPubMed
55.
Apte RN, Voronov E (2002) Interleukin-1–a major pleiotropic cytokine in tumor-host interactions. Semin Cancer Biol 12(4):277–290PubMed
56.
Colasante A, Mascetra N, Brunetti M, Lattanzio G, Diodoro M, Caltagirone S, et al. (1997) Transforming growth factor beta 1, interleukin-8 and interleukin-1, in non-small-cell lung tumors. Am J Respir Crit Care Med 156(3 Pt 1):968–973PubMed
57.
Apte RN, Krelin Y, Song X, Dotan S, Recih E, Elkabets M, et al. (2006) Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour-host interactions. Eur J Cancer 42(6):751–759PubMed
58.
Giavazzi R, Garofalo A, Bani MR, Abbate M, Ghezzi P, Boraschi D, et al. (1990) Interleukin 1-induced augmentation of experimental metastases from a human melanoma in nude mice. Cancer Res 50(15):4771–4775PubMed
59.
Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B, et al. (2008) Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14(5):408–419PubMedCentralPubMed
60.
Krelin Y, Voronov E, Dotan S, Elkabets M, Reich E, Fogel M, et al. (2007) Interleukin-1beta-driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors. Cancer Res 67(3):1062–1071PubMed
61.
Yano S, Nokihara H, Yamamoto A, Goto H, Ogawa H, Kanematsu T, et al. (2003) Multifunctional interleukin-1beta promotes metastasis of human lung cancer cells in SCID mice via enhanced expression of adhesion-, invasion- and angiogenesis-related molecules. Cancer Sci 94(3):244–252PubMed
62.
Heinrich EL, Charuworn B, Dohadwala M, Dubinett SM (2008) IL-1B dependent epithelial-mesenchymal transition in non-small cell lung cancer [abstract]. In: Proceedings of the Frontiers in Cancer Prevention Research Conference – November 16-18, Washington, DC : Cancer Prev Res 1(7 Suppl): Abstract 26
63.
St John MA, Dohadwala M, Luo J, Wang G, Lee G, Shih H, et al. (2009) Proinflammatory mediators upregulate snail in head and neck squamous cell carcinoma. Clin Cancer Res 15(19):6018–6027
64.
Dong GW, Do NY, Lim SC (2010) Relation between proinflammatory mediators and epithelial-mesenchymal transition in head and neck squamous cell carcinoma. Exp Ther Med 1(5):885–891PubMedCentralPubMed
65.
Dohadwala M, Wang G, Heinrich E, Luo J, Lau O, Shih H, et al. (2010) The role of ZEB1 in the inflammation-induced promotion of EMT in HNSCC. Otolaryngol Head Neck Surg 142(5):753–759PubMed
66.
Kiefel H, Bondong S, Pfeifer M, Schirmer U, Erbe-Hoffmann N, Schafer H, et al. (2012) EMT-associated up-regulation of L1CAM provides insights into L1CAM-mediated integrin signalling and NF-kappaB activation. Carcinogenesis 33(10):1919–1929PubMed
67.
Lee CH, Chang JS, Syu SH, Wong TS, Chan JY, Tang YC, et al. (2015) IL-1B promotes malignant transformation and tumor aggressiveness in oral cancer. J Cell Physiol 230(4): 875–884
68.
Leibovich-Rivkin T, Liubomirski Y, Bernstein B, Meshel T, Ben-Baruch A (2013) Inflammatory factors of the tumor microenvironment induce plasticity in nontransformed breast epithelial cells: EMT, invasion, and collapse of normally organized breast textures. Neoplasia 15(12):1330–1346PubMedCentralPubMed
69.
Li Y, Wang L, Pappan L, Galliher-Beckley A, Shi J (2012) IL-1beta promotes stemness and invasiveness of colon cancer cells through Zeb1 activation. Mol Cancer 11:87PubMedCentralPubMed
70.
Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4(12):915–925PubMed
71.
Trusolino L, Bertotti A, Comoglio PM MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 11(12):834–848
72.
Birchmeier C, Gherardi E (1998) Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol 8(10):404–410PubMed
73.
Siegfried JM, Weissfeld LA, Luketich JD, Weyant RJ, Gubish CT, Landreneau RJ (1998) The clinical significance of hepatocyte growth factor for non-small cell lung cancer. Ann Thorac Surg 66(6):1915–1918PubMed
74.
Siegfried JM, Luketich JD, Stabile LP, Christie N, Land SR (2004) Elevated hepatocyte growth factor level correlates with poor outcome in early-stage and late-stage adenocarcinoma of the lung. Chest 125(5 Suppl):116S–119SPubMed
75.
Grotegut S, von Schweinitz D, Christofori G, Lehembre F (2006) Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of snail. EMBO J 25(15):3534–3545PubMedCentralPubMed
76.
Li G, Schaider H, Satyamoorthy K, Hanakawa Y, Hashimoto K, Herlyn M (2001) Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene 20(56):8125–8135PubMed
77.
Kominsky SL, Argani P, Korz D, Evron E, Raman V, Garrett E, et al. (2003) Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 22(13):2021–2033PubMed
78.
Canadas I, Rojo F, Taus A, Arpi O, Arumi-Uria M, Pijuan L, et al. (2014) Targeting epithelial-to-mesenchymal transition with Met inhibitors reverts chemoresistance in small cell lung cancer. Clin Cancer Res 20(4):938–950PubMed
79.
Yu G, Jing Y, Kou X, Ye F, Gao L, Fan Q, et al. (2013) Hepatic stellate cells secreted hepatocyte growth factor contributes to the chemoresistance of hepatocellular carcinoma. PLoS ONE 8(9):e73312PubMedCentralPubMed
80.
Ogunwobi OO, Puszyk W, Dong HJ, Liu C (2013) Epigenetic upregulation of HGF and c-Met drives metastasis in hepatocellular carcinoma. PLoS ONE 8(5):e63765PubMedCentralPubMed
81.
Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE (1998) Cyclooxygenase in biology and disease. FASEB J 12(12):1063–1073PubMed
82.
Lee JM, Yanagawa J, Peebles KA, Sharma S, Mao JT, Dubinett SM (2008) Inflammation in lung carcinogenesis: new targets for lung cancer chemoprevention and treatment. Crit Rev Oncol Hematol 66(3):208–217PubMedCentralPubMed
83.
Krysan K, Reckamp KL, Dalwadi H, Sharma S, Rozengurt E, Dohadwala M, Dubinett SM (2005) Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner. Cancer Res 65(14):6275–6281PubMed
84.
Hida T, Yatabe Y, Achiwa H, Muramatsu H, Kozaki K, Nakamura S, et al. (1998) Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res 58(17):3761–3764PubMed
85.
Krysan K, Dalwadi H, Sharma S, Pold M, Dubinett S (2004) Cyclooxygenase 2-dependent expression of survivin is critical for apoptosis resistance in non-small cell lung cancer. Cancer Res 64(18):6359–6362PubMed
86.
Baratelli F, Lin Y, Zhu L, Yang SC, Heuze-Vourc’h N, Zeng G, et al. (2005) Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4 + T cells. J Immunol 175(3):1483–1490PubMed
87.
Dohadwala M, Batra RK, Luo J, Lin Y, Krysan K, Pold M, et al. (2002) Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion. J Biol Chem 277(52):50828–50833PubMedCentralPubMed
88.
Dohadwala M, Yang SC, Luo J, Sharma S, Batra RK, Huang M, et al. (2006) Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E(2) induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Res 66(10):5338–5345PubMed
89.
Tomlinson DC, Baxter EW, Loadman PM, Hull MA, Knowles MA (2012) FGFR1-induced epithelial to mesenchymal transition through MAPK/PLCgamma/COX-2-mediated mechanisms. PLoS ONE 7(6):e38972PubMedCentralPubMed
90.
Kirane A, Toombs JE, Ostapoff K, Carbon JG, Zaknoen S, Braunfeld J, et al. (2012) Apricoxib, a novel inhibitor of COX-2, markedly improves standard therapy response in molecularly defined models of pancreatic cancer. Clin Cancer Res 18(18):5031–5042PubMedCentralPubMed
91.
Adhim Z, Matsuoka T, Bito T, Shigemura K, Lee KM, Kawabata M, et al. (2011) In vitro and in vivo inhibitory effect of three Cox-2 inhibitors and epithelial-to-mesenchymal transition in human bladder cancer cell lines. Br J Cancer 105(3):393–402PubMedCentralPubMed
92.
Fujii R, Imanishi Y, Shibata K, Sakai N, Sakamoto K, Shigetomi S, et al. (2014) Restoration of E-cadherin expression by selective Cox-2 inhibition and the clinical relevance of the epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma. J Exp Clin Cancer Res 33:40PubMedCentralPubMed
93.
St John MA, Wang G, Luo J, Dohadwala M, Hu D, Lin Y, et al. (2012) Apricoxib upregulates 15-PGDH and PGT in tobacco-related epithelial malignancies. Br J Cancer 107(4):707–712
94.
Peebles KA, Lee JM, Mao JT, Hazra S, Reckamp KL, Krysan K, et al. (2007) Inflammation and lung carcinogenesis: applying findings in prevention and treatment. Expert Rev Anticancer Ther 7(10):1405–1421PubMed
95.
Chapman HA (2011) Epithelial-mesenchymal interactions in pulmonary fibrosis. Annu Rev Physiol 73:413–435PubMed
96.
Zheng H, Shen M, Zha YL, Li W, Wei Y, Blanco MA, et al. (2014) PKD1 phosphorylation-dependent degradation of SNAIL by SCF-FBXO11 regulates epithelial-mesenchymal transition and metastasis. Cancer Cell 26(3):358–373PubMed
97.
Fuchs SY, Chen A, Xiong Y, Pan ZQ, Ronai Z (1999) HOS, a human homolog of Slimb, forms an SCF complex with Skp1 and Cullin1 and targets the phosphorylation-dependent degradation of IkappaB and beta-catenin. Oncogene 18(12):2039–2046PubMed
98.
Kumar M, Allison DF, Baranova NN, Wamsley JJ, Katz AJ, Bekiranov S, et al. (2013) NF-kappaB regulates mesenchymal transition for the induction of non-small cell lung cancer initiating cells. PLoS ONE 8(7):e68597PubMedCentralPubMed
99.
Sun Q, Yao X, Ning Y, Zhang W, Zhou G, Dong Y (2013) Overexpression of response gene to complement 32 (RGC32) promotes cell invasion and induces epithelial-mesenchymal transition in lung cancer cells via the NF-kappaB signaling pathway. Tumour Biol 34(5):2995–3002PubMed
100.
Zhao Y, Xu Y, Li Y, Xu W, Luo F, Wang B, et al. (2013) NF-kappaB-mediated inflammation leading to EMT via miR-200c is involved in cell transformation induced by cigarette smoke extract. Toxicol Sci 135(2):265–276PubMed
101.
Sheshadri N, Catanzaro JM, Bott AJ, Sun Y, Ullman E, Chen EI, et al. (2014) SCCA1/SERPINB3 promotes oncogenesis and epithelial-mesenchymal transition via the unfolded protein response and IL6 signaling. Cancer Res 74(21): 6318–6329.
102.
Horiguchi K, Shirakihara T, Nakano A, Imamura T, Miyazono K, Saitoh M (2009) Role of Ras signaling in the induction of snail by transforming growth factor-beta. J Biol Chem 284(1):245–253PubMed
103.
Dhasarathy A, Phadke D, Mav D, Shah RR, Wade PA (2011) The transcription factors Snail and Slug activate the transforming growth factor-beta signaling pathway in breast cancer. PLoS ONE 6(10):e26514PubMedCentralPubMed
104.
Zheng P, Meng HM, Gao WZ, Chen L, Liu XH, Xiao ZQ, et al. (2011) Snail as a key regulator of PRL-3 gene in colorectal cancer. Cancer Biol Ther 12(8):742–749PubMed
105.
Peinado H, Ballestar E, Esteller M, Cano A (2004) Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell. Biol. 24(1):306–319PubMedCentralPubMed
106.
Peinado H, Quintanilla M, Cano A (2003) Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 278(23):21113–21123PubMed
107.
Yanagawa J, Walser TC, Zhu LX, Hong L, Fishbein MC, Mah V, et al. (2009) Snail promotes CXCR2 ligand-dependent tumor progression in non-small cell lung carcinoma. Clin Cancer Res 15(22):6820–6829PubMedCentralPubMed
108.
Yang Y, Li Y, Wang K, Wang Y, Yin W, Li L (2013) P38/NF-kappaB/snail pathway is involved in caffeic acid-induced inhibition of cancer stem cells-like properties and migratory capacity in malignant human keratinocyte. PLoS ONE 8(3):e58915PubMedCentralPubMed
109.
Ishii G, Hashimoto H, Atsumi N, Hoshino A, Ochiai A (2013) Morphophenotype of floating colonies derived from a single cancer cell has a critical impact on tumor-forming activity. Pathol Int 63(1):29–36PubMed